Water Quality Discussion ## **Discussion** - Rosemont Project - Does fill activity cause a violation of SWQS - Does fill activity degrade water quality at the OAW - Summary - Appendix ## **ROSEMONT PROJECT** ## **Rosemont Project** ### **H** DBAY #### LOCATION - Over 50 miles upstream from nearest downstream potential TNW - Santa Cruz River, Study Reach B (red) - Drainage path flows north: - Barrel Canyon - Davidson Canyon - Lower Cienega Creek - Pantano Wash - Rillito Creek - Santa Cruz River - Drainage path includes: - Stock ponds and diversion structures - Grade control structures - Diversion Dam (Pantano Dam) - Developed drainages to maintain stormwater system that include hardened channel - Numerous poles, wash crossings, bridges, etc. ## 404 Permit: Resource Overview # CLARIFICATION OF "AQUATIC" RESOURCES ON-SITE: - Onsite drainage features are dry washes that only flow briefly after storm events - No wetlands, special aquatic sites, or other specially designated waters on site - Do not support resident fish or other aquatic species - Largest washes are used as numbered and maintained Forest Service roads - OHV use would be primary recreation use no aquatic use - Stormwater quality exceeds SWQS for As, Cu, Pb, and Se Photograph 4. Looking downstream toward wide and shallow channel geometry in Barrel Canyon ## Fill impact to SWQS ## **Evaluating Current Condition** #### BASELINE EVALUATIONS COMPLETED: #### Evaluation - Geochemical testwork of coarse reject and split core samples - Peak flows and average annual runoffs from site - On-site and off-site surface water quality and quantity - Baseline measure of fluvial geomorphology #### Monitoring - Stormwater as well as quarterly spring sampling and flow measurement - In-wash monitoring in two locations plus stormwater sampling over multiple locations - Meteorology station and scattered precipitation stations - USGS gage installed in 2009 #### Method - Whole rock analysis - SPLP/MWMP - Humidity cell testing - USGS methods, regression analysis, HEC-HMS, PC-Hydro - Organic, inorganic, and metals analysis - LIDAR, size analysis, and riparian survey - Meteorological information including rainfall, evaporation, wind, temperature, and humidity ## **Conservative Water Quality Analysis** #### **EVALUATION OF WATER QUALITY IMPACT:** - Conservative calculations: - Used a low hardness value (88) when compared to on-site data (range of 80-2800) - Did not include segregation of geochemically active materials - Excluded values that did not have acceptable detection levels which skewed averaging of analysis higher on detected analytes - Screening analysis showed compliance with SWQS - Forest Service and ADEQ determined water quality would not be degraded - Stormwater runoff from the site has high levels of metals, specifically lead (total), copper (total and dissolved), arsenic (total), and selenium (total) - Waste rock geochemical testing (SPLP, MWMP, HCT) better than baseline stormwater runoff ## **Conservative Flow Calculations** #### CALCULATION OF FLOW REDUCTION: - Actual runoff measurements from USGS gage ranged between 41.5 to 189 acre-feet - Conservative calculation did not incorporate: - Did not incorporate: - Stock tanks or other diversions of flow - Site specific transmission losses - Evapotranspiration losses - Assumed that rain fell throughout the area of calculation at the same rate - Used an average annual rainfall number based on long-term records from stations in the area - Flow calculations are not predictions: - Calculated permanent decrease in annual runoff of 242 AFY at the USGS gage near the site (average annual runoff was estimated to be 1,407 AFY) - Actual flows have been less than 10% of the calculated average annual runoff ## **Barrel Canyon Flows** ### RUNOFF ASSOCIATED WITH THE USGS GAGE AT BARREL CANYON | Year | Number of Days
of Flow | Annual Runoff
Volume
(in acre-feet) | |---|---------------------------|---| | Project runoff modeled at 1,400 ac-ft per year with a reduction of 242 ac-ft per year | | | | 2010 | 9 | 44.62 | | 2011 | 9 | 188.96 | | 2012 | 14 | 133.88 | | 2013 | 6 | 41.54 | | 2014 | 13 | 51.98 | | 2015 | 21 | 185.61 | | 2016 | 16 | 168.07 | | Avg | 12.5 | 116.38 | ## **SWQ Summary** ### WATER QUALITY (FEIS PP.362-398 (GROUNDWATER), PP.443-485 (SURFACE WATER)) - The Arizona Department of Environmental Quality has assured protection of water quality through issuance of all necessary permits: - Aquifer Protection Permits (groundwater) - Stormwater Permits (surface water runoff) - 401 Certification (fill activity) - Each of ADEQ's permits include: - Required technology and/or best management practices - Sampling, monitoring, and reporting obligations - Enforcement mechanisms - Forest Service concluded: - Project will not cause exceedances of Arizona's Aquifer Water Quality Standards - "Predictions of runoff water quality from the tailings and waste rock facilities ... is not expected to degrade the existing surface water quality" Fill impact to OAW (Tier III Water) ## **Davidson Canyon Wash** ### DRAINAGE I-10 TO REACH 2 SPRING AND REACH 2 SPRING - Nearest Outstanding Arizona Water (OAW) is approximately 13 miles downstream from Rosemont Project site - Over 70% of the OAW is designated by the state as ephemeral which does not meet criteria for listing as OAW - Intervening road crossings, wells, septic systems, water supply wells, stock tanks and associated ranching facilities, a winery, a quarry, etc. - Does not currently meet water quality standards during storm events ## **Evaluating Current Condition** #### **BASELINE EVALUATIONS COMPLETED:** #### Evaluation - Peak flows from the site - Average annual runoffs - Off-site surface water quality and quantity - Baseline measure of fluvial geomorphology - Davidson Canyon watershed, drainage, and water sources for springs #### Monitoring - In-wash monitoring upstream of the OAW but outside Barrel Canyon - Quarterly spring sampling and flow measurement - Stock tank measurements of content and capacity #### Method - USGS methods, regression analysis, HEC-HMS, USGS flow measurements - LIDAR, screen sizing, and riparian survey - Tritium, carbon dating, and isotope analysis - Organic, inorganic, and metals analysis # **Davidson Canyon Watersheds** # **Davidson Canyon** # **Davidson Canyon OAW** ## **Conservative Flow Calculations** #### **CALCULATION OF FLOW REDUCTION:** - Calculation of modeled permanent decrease in annual runoff of 4.3% at the OAW reach of Davidson Canyon based solely on area and average rainfall - Conservatively, the model: - Did not incorporate - Stock tanks or diversions of flow between the site and the OAW - Site specific transmission losses - Evapotranspiration losses - Assumed that rain fell throughout the area modeled at the same rate - Used an average annual rainfall and was based on long-term records - Data from monitoring in Davidson Canyon (4 miles downstream) shows: - Conservative runoff values— Monitoring station at Davidson Canyon registered flow 10 times compared to flow 60 times at a monitoring station in Barrel Canyon - Models are conservative for both rainfall and runoff only 15% of the time traveled only 4 miles let alone a distance of 13 miles. ## **Conservative Water Quality Analysis** #### **EVALUATION OF WATER QUALITY DEGRADATION:** - Conservative calculations, did not account for: - Dilution over the 13 stream-miles to the OAW - Existing stormwater quality at the OAW no baseline sampling of stormwater was performed at the OAW for the listing or for the EIS analysis - Existing stormwater quality in Davidson with consistent lead (total) and copper (total and dissolved) exceedances of standards - Extremely low risk of lowering of water quality: - Stormwater regulated under MSGP - Stormwater quality on-site, in Davidson Canyon, at the Davidson Canyon OAW and at Cienega Creek (OAW) above and below the Davidson Canyon confluence currently exceeds standards - Only opportunity for degradation would be stormwater discharge from waste rock specifically managed to isolate geochemically active material ### **SUMMARY** ## **Summary** - Conservative calculations performed to for impacts on runoff - Decrease of annual runoff 242 AFY higher than baseline measurements - Calculated peak discharge for Barrel Canyon (14 square miles) at 8,072 cfs exceeds highest measured peak discharge for Pantano Wash (450 square miles) at 2,230 cfs by 3.6 - Surface water quality impacts estimated to be less than current baseline - Baseline stormwater quality does not meet surface water quality standards on-site or at OAW - Testing showed no potential to impact stormwater with appropriate management of materials - Analysis used low hardness values (88 vs. 250-400) when calculating standards - Baseline data gathered to support analysis including: - Water quality - Geomorphology - Riparian areas - Flows **Questions?**